MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :
O pêndulo quântico é fundamental para entender as rotações internas impedidas na química, as características quânticas dos átomos de dispersão, bem como numerosos outros fenômenos quânticos.[1] Embora um pêndulo não sujeito à aproximação de pequeno ângulo tenha uma não-linearidade inerente, a equação de Schrödinger para o sistema quantizado pode ser resolvida de forma relativamente fácil.[2][3][4]
Equação de Schrödinger[editar | editar código-fonte]
Usando a teoria lagrangiana da mecânica clássica, pode-se desenvolver um hamiltoniano para o sistema. Um pêndulo simples tem uma coordenada generalizada (o deslocamento angular ) e duas restrições (o comprimento da corda e o plano de movimento). As energias cinéticas e potenciais do sistema podem ser encontradas em
Isso resulta no Hamiltoniano
- / G* = = [ ] ω , , .=
A equação de Schrödinger dependente do tempo para o sistema é
- / G* = = [ ] ω , , .=
É preciso resolver a equação de Schrödinger independente do tempo para encontrar os níveis de energia e os auto-estados correspondentes. Isso é efetuado melhor alterando a variável independente da seguinte maneira:
Esta é a equação de Mathieu.[5]
- / G* = = [ ] ω , , .=
onde as soluções são as funções Mathieu.[6][7][8]
A relação de Planck–Einstein[1][2][3] é também conhecida como relação de Einstein,[1][4][5] ou como relação de frequência-energia de Planck,[6] relação de Planck,[7] e equação de Planck.[8] A expressão fórmula de Planck[9] também pertence a esta lista, mas muitas vezes se refere à lei de Planck[10][11] Esses vários epônimos são usados de maneira esporádica. Referem-se a uma fórmula integral da mecânica quântica, que estabelece que a energia de um fóton E é proporcional à sua frequência, ν:
- / G* = = [ ] ω , , .=
A constante de proporcionalidade, h, é conhecida como constante de Planck. Existem várias formas equivalentes da relação.
A relação explica a natureza quantizada da luz, e desempenha um papel decisivo no entendimento de fenômenos como o efeito fotoelétrico, e a lei de Planck da radiação de corpo negro.
Formas espectrais[editar | editar código-fonte]
A luz pode ser caracterizada usando várias quantidades espectrais, como a frequência ν, comprimento de onda λ, número de onda , e seus equivalentes angulares (frequência angular ω, comprimento de onda angular y, e número de onda angular k). Essas grandezas se relacionam pela equação
- / G* = = [ ] ω , , .=
então a relação de Planck pode ter as seguintes formas "padrão"
- / G* = = [ ] ω , , .=
assim como as seguintes formas 'angulares',
- / G* = = [ ] ω , , .=
As formas padrão fazem uso da constante de Planck h. As formas angulares fazem uso da constante reduzida de Planck ħ = h2π. Aqui, c é a velocidade da luz.
Relação de de Broglie[editar | editar código-fonte]
A relação de de Broglie,[5][12][13] também conhecida como relação momento–comprimento de onda de de Broglie,[6] generaliza a relação de Planck para ondas de matéria. Louis de Broglie argumentou que se as partículas possuem natureza de onda, a relação E = hν também se aplicaria para elas, e postulou que as partículas teriam um comprimento de onda igual a λ = hp. Combinando o postulado de de Broglie com a relação de Planck–Einstein resulta em
A relação de de Broglie também é algumas vezes encontrada na forma vetorial
- / G* = = [ ] ω , , .=
onde p é o vetor momento, e k é o vetor de onda angular.
Condição de frequência de Bohr[editar | editar código-fonte]
A condição de frequência de Bohr estabelece que a frequência de um fóton absorvido ou emitido durante uma transição eletrônica relaciona-se à diferença de energia (ΔE) entre os dois níveis de energia envolvidos na transição:[14]
- / G* = = [ ] ω , , .=
Isso é uma consequência direta da relação de Planck–Einstein.
Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]

Considerando um elétron e a densidade de probabilidade da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
, / G* = = [ ] ω , , .=
Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]
O magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:
- / G* = = [ ] ω , , .=
onde:
- é a carga elementar,
- é a constante de Planck reduzida,
- é a massa em repouso do elétron
No sistema internacional de unidades se valor é aproximadamente:
No sistema CGS de unidades seu valor é aproximadamente:
Comentários
Postar um comentário